数学分析之拉格朗日余项与误差 Sep 5, 2019 · 数学分析 · 分享到: 拉格朗日余项与误差 拉格朗日余项 拉格朗日误差界 例题 交错级数 拉格朗日插值余项 拉格朗日余项 拉格朗日余项和泰勒公式密不可分。泰勒级数的全形如下: \[ \begin{aligned} f(x)&=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\dotsb+\frac{f^{(n)}(a)}{n!}(x-a)^n+\dotsb \\ &=\sum^{\infty}_{n=0}\frac{f^{(n)}(a)}{n!}(x-a)^n \end{aligned}\] 其中,前n项可以称为函数在点\(x=a\)处的\(n\)阶泰勒展开式。所谓的阶,是指\(x\)的幂次;\(n\)阶就是\(x\)的最高次幂为\(n\),而不是展开到第\(n\)项。 但是,泰勒展开能够无限地逼近原函数,是以n趋向于无穷为前提条件的。如果我们只是将函数展开到n阶,则后面的部分(我们称为余项, remainder)就被省略了,这必然会产生误差。记余项的表达式为\(R_n(x)\),用它表示n项之后的余项(注意下标是 n 而不是 n+1),我们可以将泰勒展开写成如下形式: \[ f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\dotsb+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x) \] 或者说 \[f(x)=P_n(x)+R_n(x)\] 这式子的意思是原函数可以分解为两个部分,一部分是 n 阶泰勒展开,另一部分就是拉格朗日余项。那么,做一个移项,就可以有:\(R_n(x)=f(x)-P_n(x)\)。 这就是说,用n阶幂级数来逼近原函数,其误差就是这一余项。而拉格朗日余项就是表达这些被省略部分的一个公式,我们可以用它来估计误差。为此,我们先写出函数的第 n+1 阶展开式: \[\frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^{n+1}\] 而拉格朗日余项(在具体题目中,我们也称为拉格朗日误差界 Lagrange Error Bound) 在形式上就类似于函数的第 n+1 阶,其表达式如下: \[R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},c在x与a之间。\] 需要注意的是,c只是在x与a之间,可能是\(x\le c\le a\),也可能是\(a\le c\le x\)。同时,拉格朗日余项定理像微分中值定理(Mean Value Theorem)、介值定理(Intermediate Value Theorem)一样,都是存在性定理,即只能告知值的存在(我们知道有这样一个值),但不能告知其具体位置(但不知道它到底是多少)。如果我们使用麦克劳林式(Maclaurin Series,即\(a = 0\)时的特殊形式),就可以将拉格朗日余项变成较简单的形式: \[R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1},c在x与0之间。\] 拉格朗日误差界 观察拉格朗日余项定理的形式,对于给定\(a、n和x\)的情况下,如果要确定这个余项的界限,唯一要确定的就是前面的这个第 n+1 阶导数的取值范围。若令有正数\(M=|f^{(n+1)}(c)|\),则只需要确定M的范围,那么,整个余项的范围也就唯一给定了。由于误差值可能为正,也可能为负,为便利讨论,我们一般都取其绝对值进行考查,即 \[\begin{aligned} |R_n(x)|&=|\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}| \\ &=\frac{M}{(n+1)!}|(x-a)^{n+1}| \end{aligned}\] 而对于麦克劳林式,我们就变成考查: \[\begin{aligned} |R_n(x)|&=|\frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}| \\ &=\frac{M}{(n+1)!}|x^{n+1}| \end{aligned}\] 这时我们就要介绍一个基本定理,即拉格朗日余项定理: 若存在正数Max,使得对任意\(\xi\),如果\(a \le \xi \le x\)或\(x \le \xi \le a\),均有\(|f^{(n+1)}(\xi)|\le M\),则: \[|R_n(x)|=|\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}| \le \frac{M}{(n+1)!}|(x-a)^{n+1}|\] 也就是说\(M\)的取值范围其实就由\(|f^{(n+1)}(\xi)|,(a \le \xi \le x\)或\(x \le \xi \le a)\)唯一给定。这一不等式也叫泰勒不等式。这是我们进行余项范围估计的主要理论基础。 例题 例1 将\(y=sin(x)\)展开成麦克劳林式,并估计其误差: 根据基本公式:\(sin(x)=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\dotsb+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+\dotsb\),很容易得出5阶麦克劳林式:\(sin(x)\approx x-\frac{1}{3!}x^3+\frac{1}{5!}x^5\) 其余项按照拉格朗日余项定理,可以写成(注意:5阶的余项是6次方): \[R_5(x)=\frac{f^6(c)}{6!}x^6,c在0和x之间\] 而\(|f^6(x)|=|-sin(x)| \le 1\),所以\(R_5(x) \le \frac{x^6}{6!}\)。 例2 将\(y=sin(x)\)展开成麦克劳林式,据此估计sin 0.2的值,并计算其误差。 使用例1结论:\(sin(0.2)\approx 0.2-\frac{1}{3!}(0.2)^3+\frac{1}{5!}(0.2)^5 \approx 0.1986693333\) 同时,\(R_5(0.2) \le \frac{0.2^6}{6!}=8.888889*10^{-8}\) 交错级数 在一些情况下,使用交错级数计算误差相对简单,其基本定理如下: 若交错级数\(\sum^{\infty}\limits_{n=0}u_n=\sum^{\infty}\limits_{n=0}(-1)^{n+1}(v_{n})\)满足以下条件: 正项递减,即\(0\le v_{n+1} \le v_n;\) 正项趋零,即\(\lim\limits_{x \to +\infty}v_n=0\) 则必有其余项的范围\(|R_n(x)|=|S-S_n|<|u_{n+1}|=v_{n+1}\) 其中,S表示全部和,\(S_n\)表示部分和,也就是我们高中数学里习惯说的前n项和。简单的讲,交错级数前n项和的余项,不会超过接下来这一项的绝对值,这就是交错级数的余项公式。 拉格朗日插值余项 在插值过程中,有一个拓展概念叫拉格朗日插值余项。取插值结点:\(a≤x0<x1<······<xn≤b\) 满足\(L_n(x_k)=f(x_k)\)的 n 次多项式插值余项: \[R_n(x)=f(x)-L_n(x) \\ =\frac{f^{(n+1)}(\xi_n)}{(n+1)!}\omega_{n+1}(x)\] 其中,\(\omega_{n+1}(x)=(x-x_0)(x-x_1)\dotsb (x-x_n)\)。选取:\(x_0,x_1,\dotsb,x_n\),使\(\underset{a\le x \le b}{max}|\omega_{n+1}(x)|=min\) 结论:选取切比雪夫多项式\(T_{n+1}(x)\)的全部零点。 使用切比雪夫节点插值和等距插值对函数\(f(x)=\frac{1}{1+x^2}\)模拟: 插值函数L10(x)取切比雪夫结点插值 插值函数L10(x)取等距结点插值