tensorflow-tf.control_dependencies()作用及用法 Jul 2, 2020 · tensorflow 机器学习 · 分享到: tensorflow tf.control_dependencies()作用及用法 在有些机器学习程序中我们想要指定某些操作执行的依赖关系,这时我们可以使用tf.control_dependencies()来实现。 control_dependencies(control_inputs)返回一个控制依赖的上下文管理器,使用with关键字可以让在这个上下文环境中的操作都在control_inputs 执行。 原型分析 1tf.control_dependencies(self, control_inputs) arguments:control_inputs: A list of Operation or Tensor objects which must be executed or computed before running the operations defined in the context. (注意这里control_inputs是list) return: A context manager that specifies control dependencies for all operations constructed within the context. 1with g.control_dependencies([a, b, c]): 2 # `d` and `e` will only run after `a`, `b`, and `c` have executed. 3 d = ... 4 e = ... 可以嵌套control_dependencies 使用 1with g.control_dependencies([a, b]): 2 # Ops constructed here run after `a` and `b`. 3 with g.control_dependencies([c, d]): 4 # Ops constructed here run after `a`, `b`, `c`, and `d`. 可以传入None 来消除依赖: 1with g.control_dependencies([a, b]): 2 # Ops constructed here run after `a` and `b`. 3 with g.control_dependencies(None): 4 # Ops constructed here run normally, not waiting for either `a` or `b`. 5 with g.control_dependencies([c, d]): 6 # Ops constructed here run after `c` and `d`, also not waiting 7 # for either `a` or `b`. 注意:控制依赖只对那些在上下文环境中建立的操作有效,仅仅在context中使用一个操作或张量是没用的 1# WRONG 2def my_func(pred, tensor): 3 t = tf.matmul(tensor, tensor) 4 with tf.control_dependencies([pred]): 5 # The matmul op is created outside the context, so no control 6 # dependency will be added. 7 return t 8 9# RIGHT 10def my_func(pred, tensor): 11 with tf.control_dependencies([pred]): 12 # The matmul op is created in the context, so a control dependency 13 # will be added. 14 return tf.matmul(tensor, tensor) 例子:在训练模型时我们每步训练可能要执行两种操作,op a, b 这时我们就可以使用如下代码: 1with tf.control_dependencies([a, b]): 2 c= tf.no_op(name='train')#tf.no_op;什么也不做 3sess.run(c) 4 5# 在这样简单的要求下,可以将上面代码替换为: 6c= tf.group([a, b]) 7sess.run(c) 其他关于tf.identity()的奇怪操作可见https://blog.csdn.net/u012436149/article/details/72084744 使用tf.no_op()是一个占位符,表示什么都不做,但是会返回一个operation,用以保证tf.control_dependencies()被执行,和tf.group操作类似。 版权声明:本文为CSDN博主「PKU_Jade」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/PKU_Jade/article/details/73498753